top of page
Meeting

CEMC Courses

Signal Integrity

(LEC 3.0)

Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasitics (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs.

Interference Control in Electronic Systems

(LEC 3.0)

Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasitics (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs.

Advanced RF & Time Domain Measurements

(LEC 3.0)

Advanced measurement techniques and instrumentation: Oscilloscopes (Real time and sampling, A/D conversion errors, Probing, Jitter, Noise), Spectrum analyzer (concepts, applications), Network Analyzer (concepts, calibration), Impedance measurements. Lab experiments are a main part of this class.

Computational Electromagnetics

(LEC 3.0)

Differential-equation based numerical methods-finite element, finite-difference, and finite-difference time-domain-for solving static and dynamic equations of electromagnetics. Applications considered are multi-conductor transmission lines, Maxwell's equations for radiation and scattering, and electric machinery.

Advanced Electromagnetics1

(LEC 3.0)

Signal integrity ensures signals transmitted over a propagation path maintain sufficient fidelity for proper receiver operation. Compromised signal integrity is often associated with parasitics (e.g. unintentional inductance, capacitance). Theory and CAD tools used for signal integrity analysis of functioning designs.

bottom of page